八年级数学上册15.1分式15.1.2分式的基本性质第1课时分式的基本性质教案(新人教版)
八年级数学上册15.1分式15.1.2分式的基本性质第1课时分式的基本性质教案(新人教版),分式的基本性质,莲山课件.
第十五章 分式
15.1 分 式
15.1.1 从分数到分式
1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.
2.能够通过分式的定义理解和掌握分式有意义的条件.
重点
理解分式有意义的条件及分式的值为零的条件.
难点
能熟练地求出分式有意义的条件及分式的值为零的条件.
一、复习引入
1.什么是整式?什么是单项式?什么是多项式?
2.判断下列各式中,哪些是整式?哪些不是整式?
①;②1+x+y2;③;④;⑤;⑥;⑦.
二、探究新知
1.分式的定义
(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?
分析:设江水的流速为v千米/时.
轮船顺流航行90千米所用的时间为小时,逆流航行60千米所用时间为小时,所以=.
(2)学生完成教材第127页“思考”中的题.
观察:以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A,B都是整式,并且B中都含有字母.
归纳:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.
八年级数学上册15.1分式15.1.2分式的基本性质第2课时分式的约分通分教案(新人教版)
八年级数学上册15.1分式15.1.2分式的基本性质第2课时分式的约分通分教案(新人教版),分式的基本性质,莲山课件.
巩固练习:教材第129页练习第2题.
2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?
分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.
学生自学例1.
例1 下列分式中的字母满足什么条件时分式有意义?
(1);(2);(3);(4).
解:(1)要使分式有意义,则分母3x≠0,即x≠0;
(2)要使分式有意义,则分母x-1≠0,即x≠1;
(3)要使分式有意义,则分母5-3b≠0,即b≠;
(4)要使分式有意义,则分母x-y≠0,即x≠y.
思考:如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?
巩固练习:教材第129页练习第3题.
3.补充例题:当m为何值时,分式的值为0?
(1);(2);(3).
思考:当分式为0时,分式的分子、分母各满足什么条件?
分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零.
答案:(1)m=0;(2)m=2;(3)m=1.
三、归纳总结
1.分式的概念.
2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义.
3.分式的值为零的条件:(1)分母不能为零;(2)分子为零.
四、布置作业
教材第133页习题15.1第2,3题.
在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.
八年级数学上册15.2分式的运算15.2.1分式的乘除第1课时分式的乘除法教案(新人教版)
八年级数学上册15.2分式的运算15.2.1分式的乘除第1课时分式的乘除法教案(新人教版),分式的乘除法,莲山课件.